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Abstract—The cost of DNA sequencing has plummeted in
recent years. The consequent data deluge has imposed big bur-
dens for data analysis applications. For example, MG-RAST,
a production open-public metagenome annotation service, has
experienced increasingly large amount of data submission and
has demanded scalable resources for the computational needs.
To address this problem, we have developed a scalable platform
to port MG-RAST workloads into the cloud, where elastic
computing resources can be used on demand. To efficiently
utilize such resources, however, one must understand the
characteristics of the application workloads. In this paper,
we characterize the MG-RAST workloads running in the
cloud, from the perspectives of computation, I/O, and data
transfer. Insights from this work will help guide application
enhancement, service operation, and resource management for
MG-RAST and similar big data applications demanding elastic
computing resources.

Keywords-Big data applications, bioinformatics, workload
characterization, data analytics as a service, cloud computing

I. INTRODUCTION

The next-generation sequencing technology has dramati-
cally cut the DNA sequencing cost and benefited a spectrum
of biosciences. For example, metagenomics, the study of
the genetic material obtained directly from environmental
samples to understand the microbial ecosystems [9], has
thrived in recent years since various metagenome data can
be generated easily. The continuous data growth, however,
has imposed big burdens on the downstream data analysis.

In order to address the computational needs for metage-
nomic data analysis, MG-RAST [1][19][26], a metagenome
annotation server, was launched in 2007 at Argonne Na-
tional Laboratory as a free service and has grown into a
dominant resource for the metagenomic research community
worldwide. MG-RAST receives user data submissions (DNA
sequence data) and processes the data with a pipeline of
bioinformatics tools. As the data continue to grow, however,
MG-RAST has faced pressure on productivity and the need
for extra, scalable computing resources. As a result, we
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have built a scalable computing platform [24] and ported
the entire MG-RAST pipeline into the cloud.

Using elastic cloud resources for big data analysis brings
considerable flexibility. But it also introduces extra com-
plexity and challenges regarding application-related resource
utilization. For example, it is not straightforward to deter-
mine what hardware types are required for an application
and how many computing cycles should be invested to
serve a job. This situation is caused by the diversity of
the computing resources combined with variations in the
data analysis workloads. Thus, in order to efficiently utilize
elastic computing resources to serve big data applications,
a solid understanding of the workload characteristics is
crucial. Failing to achieve such understanding may result
in application failures, wastage of computing cycles, and
unnecessary data movement.

In this paper, taking MG-RAST as an exemplary big data
application, we characterize its workloads running in the
cloud, in terms of computation, I/O, and data transfer over
network. The insights of this work are expected to guide ap-
plication enhancement, service operation, and resource man-
agement for MG-RAST and similar applications or services
using elastic computing resources. To our best knowledge,
our work is the first to characterize the cloud workloads of
a production bioinformatics data analysis service. Moreover,
our open-source computing and performance management
platform can be applied to a variety of big data applications
for scalable data analysis and workload characterization.

In the remainder of this paper, we first introduce the
MG-RAST applications and the data problems (section II).
Next, we briefly discuss the computing platform (section III)
that runs the MG-RAST workloads in the cloud. Then, we
present the workload characterization results (section IV)
and discuss the implications for applications development
(section V). We compare our work with some related efforts
(section VI) and then summarize the paper (section VII).



II. APPLICATION OVERVIEW

In this section, we describe the MG-RAST applications
as well as the data growth experienced by the MG-RAST
service.

A. MG-RAST Applications

MG-RAST is a metagenomics sequence data analysis
platform developed and maintained at Argonne National
Laboratory [1]. MG-RAST accepts raw sequence data sub-
mission from freely registered users and automates a series
of bioinformatics tools to process, analyze, and interpret the
data before returning analysis results to users.

MG-RAST is popular among a number of scientific
communities and has been serving users from a variety of
backgrounds, such as microbiology, medical science, phar-
macology, environmental science, ecology, archaeology, and
anthropology. As of June 2014, MG-RAST has processed
over 125,000 metagenome samples, consisting of over 50
terabase pairs (50 x 10'2 bp) of sequence data for over
14,000 registered users from over 80 countries. Note that
a base pair in the sequence file is represented by a character
(one of A, C, G, and T, or other letters in cases of ambiguous
sequences).

B. MG-RAST Pipeline: A Closer Look

An MG-RAST job, analyzing a single metagenomic data
set, runs a series of data processing and analysis tasks in a
pipeline (Figure 1). Basically the tasks can be categorized
into three conceptual steps: quality control, data reduction,
and analysis.
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Figure 1. MG-RAST pipeline

In the quality control step, the objective is to filter out
noisy sequences. “Preprocessing” removes some ambiguous
sequences (with many non-ACGT characters) or low-quality
sequences. ‘“Dereplication” removes duplicated sequences,
and “screening” removes unneeded human genomic se-
quences that may have been mixed into the sample acci-
dentally. An “error detection” task estimates the sequence
errors.

In the data reduction step, “gene prediction” finds genes in
the DNA sequence. In this stage, nucleic acid sequences are

transferred to amino acid sequences (from 4-letter alphabet
to 20-letter alphabet). “Clustering” further compresses the
data by grouping similar sequences and presenting only one
“consensus” sequence for each group to the next stage.

In the data analysis step, the basic procedure is to first
“identify proteins or RNAs” by querying public databases
(i.e., similarity search) and then to do “annotation,” assigning
known functionalities to the identified protein or RNA se-
quences. The similarity search is computationally expensive
because the databases are huge.

Some tasks use our private scripts or tools, and some
use third-party tools [26]. For examples, screening uses
Bowtie [17], a sequence alignment tool; gene prediction uses
FragGeneScan [21], an HMM-based gene prediction tool for
short and error-prone sequences; clustering uses Uclust [12],
a search-based clustering tool; and the protein and RNA
identification uses another sequence alignment tool named
BLAT [16].

C. The Data Growth

The data submitted to MG-RAST has increased steadily
over time. As shown in Figure 2, MG-RAST processed 1
Tbp of data in its first five years of operation. But in the
following three years the number surged up to over 50 Tbp.
After mid-2011, the data processed in each quarter is more
than the total number of the first four years, and the general
trend by quarter is increasing: Q3/2011 has significantly
more data because in September 2011, 4.3 Tbp of data from
the National Institutes of Health Human Microbiome Project
[6] were submitted. Another significant increase appears
recently: after Q1/2013, each month has more than 1 Tbp of
data submitted—the sum of the first five years. The number
of jobs submitted also keeps increasing, from thousands per
year earlier to thousands per month today (Figure 3).
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Figure 2.  Sequence data (in Tbp) submitted to MG-RAST over the
years/quarters. (1 Tbp = 1012 base pairs)

Base on MG-RAST job inventory, the input size per
sample ranges from several Mbp to more than 60 Gbp.
There exists two major data types in MG-RAST, 16s and
shotgun. The 16s samples are typically small data sets,
with average data size about 25 Mbp. The shotgun data
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Figure 3. Number of jobs submitted to MG-RAST over the years/quarters.

is bigger, with average data size 850 Mbp and is in an
increasing trend. Considering 1 base pair is represented by
a character (1 Byte) in the text file, the file size in Bytes
is comparable to the number of base pairs (the former
usually has larger number because the sequence file has
commentary texts). Although the input file size may be
moderate, the total computational cost is very high because
the typical bioinformatics applications are computational
expensive; that is, a small amount of data requires a long
time to process. In summary, the size per sample at this
scale, combined with the number of samples submitted per
month, has already imposed a high cost for computation and
data management.

III. DATA ANALYSIS PLATFORM

To address the impacts by large data sets, we developed a
scalable data analysis platform (Shock/AWE) that can scale
out workflow computation to the cloud. The system design
and implementation were discussed in our previous work
[24]. Here we briefly review the system design and the
deployment.

A. System Overview

Shock is a data management system for biological se-
quence data. It is built on on top of a backend storage system
to provide object-based data store, supporting scientific
metadata management, sequence file subsetting, and compu-
tational provenance. It is designed to provide convenient data
query, sharing, and reuse, as well as efficient data storage
for scalable and portable computing clients.

AWE is a distributed workflow and resource management
system based on a server/clients model. The server receives
job submissions and maintains a work queue. The AWE
clients, running on heterogeneous distributed-computing re-
sources, fetch workunits from the queue and execute them
locally. AWE uses Shock for data storage and subsetting.
During computation, AWE clients can report application-
specific performance data to the AWE server, which is
managed as job traces for online and offline study. Figure 4
shows a diagram of the Shock/AWE framework. Both Shock
and AWE are open-source available at Github [7][2].
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Figure 4. Shock and AWE building an integrated data analysis platform.

B. Platform Deployment

We have deployed the Shock and AWE systems in the
Magellan cloud computing system[25] at Argonne. Magellan
is managed by OpenStack software, tuned for scientific
computing workloads. It consists of 7,500 compute cores,
30 TB of RAM, and about 1 PB of storage, connected with a
QDR InfiniBand fabric. Magellan has been serving multiple
research projects. For MG-RAST, we use a number of virtual
machines (VMs) in Magellan as a dedicated resource pool;
the number of VMs varies from 100 to 200 depending on
the resource availability. We use the default configuration
for all the VMs: 8 VCPUs (each with 2.6 GHz), 22 GB
memory, and 300 GB disk. The platform allows us to
use extra computing resources from other clouds such as
Amazon EC2. We have enabled MG-RAST users to add
their own resources from elsewhere to accelerate their own
jobs. Here, however, we look only at the jobs processed
within Magellan.

IV. WORKLOAD CHARACTERIZATION

We now present the workload characterization regarding
compute characteristics and I/O data movement.

A. Job Trace

Our workload characterization is based on the job trace
collected on the production system containing all the jobs
completed in May 2014. The trace contains 4,382 complete
jobs, 43,820 tasks, and 59,948 workunits. Here, a job repre-
sent a workflow run for one specific metagenome sample as
input data. A task represent the computation for a particular
stage in the workflow. A task can be split into one or multiple
workunits, each processing a subset of the input data of the
same task (Figure 5). The workunit is the unit maintained
in the queue and processed by the computing clients.

As shown in Figure 1, the MG-RAST pipeline (workflow)
has 10 stages, representing 10 tasks. The tasks marked in
green (tasks 2 through 8) are embarrassingly parallel and



thus can be split into multiple workunits. There are two
ways to split a task into workunits: by number of splits
or by maximum split size. For MG-RAST tasks, we use
the latter way, which means the number of splits are not
fixed (depending on the total size). Table I describes the
task information for the MG-RAST pipeline, including the
associated bioinformatic tools and and split sizes. Note that
“n/a” in the last column means the task is not split (i.e., one
workunit for one task).

Table 1
TASK DESCRIPTIONS.

# | Abbr. | Task Name Tool Split Size
0 | prep preprocessing in-house scripts | n/a

1 | depl dereplication in-house scripts | n/a

2 | scrn screening Bowtie 500 MB
3 | gncl gene calling FragGeneScan 500 MB
4 | clst protein clustering uclust 2 GB

5 | sims protein similarity search | blat 50 MB
6 | rsch rna search in-house scripts | n/a

7 | rcls rna clustering uclust 2 GB

8 | rsim rna similarity search blat 50 MB
9 | annt annotation in-house scripts | n/a

Figure 6 shows the number of active jobs, tasks, and
workunits in the job trace, from which we can get a sense of
how the queue depth varies over time. For example, we see
at most over 600 jobs in the system simultaneously and a
peak number of over 1,200 workunits. (There are also some
periods of time when the numbers are very low, which were
caused by system maintenance.)

B. Computational Characteristics

We first look at the computational characteristics of MG-
RAST pipeline shown in Figure 7. The compute time is per
workunit processing wall time reported by AWE clients.

Figure 7(a) shows the cumulative distribute function
(CDF) of the compute time consumed by each workunit,
grouped by task stages. As shown in the figure, the most
time-consuming task is the protein similarity search (szms).
The median running time of each sims workunit is nearly
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Number of active jobs, tasks, and workunits in the May 2014

3 hours, and the 90th percentile is about 4 hours. For other
stages, the median running time per workunit is several
minutes, and the 90th percentile varies from several minutes
to slightly more than one hour.

Figure 7(b) shows the CDF of compute times normalized
by the input data size, which represents the compute expen-
siveness: compute time needed per unit size of input data.
As shown in the figure, for the most expensive task, 80%
of workunits require 100 to 1000 seconds per megabyte; the
remaining 20% need more than 1000 seconds per megabyte.
For the least expensive task, drpl, 98% of the workunits need
less than 1 second per megabyte. Other tasks fall in between:
the median varies from 1 to 10 seconds per megabyte. And
almost all the tasks have small and large outliers (the sharp
change of the plots at the top and the bottom).

Figures 7(c) to 7(1) show the correlation between the
compute time and the input data size for workunits at each
stage. Each dot in the figures represents a workunit run.
The x-axes are input data size in megabytes, and the y-axes
represent the compute time in seconds. As shown in the
figures, for some of the tasks, the workunit compute time is
generally linearly related to the input size (tasks 0, 1, 2, 3,
6, 9) although each of them has some outliers.

The rest of the tasks show more complex characteristics.
For example, the compute times of clustering for both pro-
tein (clst) and RNA (rcls) appear to not relate to the input
size. For the most expensive task,a protein similarity search
stms), for the same input data size, the upper bound and
lower bound of the compute times increase linearly, and the
gap between the bounds gets larger as input data increases.
For the RNA similarity search (rsim), the lower bound is
0, and the upper bound increases almost linearly. For these
two task, the compute times are related not only related to
the input data size but also to how many matches are found
between the query sequences and reference databases.

C. I/O Characteristics

In this section, we present some application characteristics
related to input and output data size in order to see how data
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Figure 7. Compute time characteristics

®

gets reduced and regenerated during the pipeline computa-
tion. As shown in Figure 8, data is reduced at most of the
pipeline stages. For example, the preprocessing will remove
low-quality sequences and convert the raw input format from
fastq [10] to fasta [3], which results in substantial data

reduction. Dereplication also involves data reduction, but
it retains all the sequence data (including removed ones);
thus we see equal input and output data sizes. Only the
passed sequences are handed into the subsequent screening
stage, where we can see that the input data data is noticeably
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reduced from the last stage’s output.

On the contrary, sims generates more output data based
on the input data sets because for each query sequence there
may be multiple matching entries in the output. The annt
stage uses big input data sets because it uses output data
sets from multiple previous stages (including raw inputs,
clustering output tables, and similarity search outputs).

D. Data Movement Overhead

The side effect of scaling computation out to the cloud
is the data movement cost. Therefore, we measure the data
movement overhead of MG-RAST running in the cloud, in
order to identify the potential problems.

Figure 9(a) shows the correlation between the data transfer
time and the data size. Each dot in the figure represents an
input or output data transfer between the compute clients
and the data server (downloading means move data from
input data server to compute clients, and uploading means
move output data from compute client to the data server).
The time is observed from the compute clients.

As shown in the figure, the download time increases
almost linearly with the data size, except for some spikes
at certain size. These spikes result when a task gets ready
and is split into many workunits that are fetching the input
data simultaneously, thereby causing network contentions.
For example, a spike is clearly seen at 50 MB data size
because the sims tasks are usually split into many 50 MB-
size workunits. We can also observe that data upload is much
slower than data download. The reason is that in the upload
process, MD5 checksum will be calculated at the data server
side; thus the uploading becomes CPU-bound and suffers
contention.

Both the download and upload contentions can be ad-
dressed by future enhancement of our software implemen-
tations. For example, for simultaneous downloading and
uploading, a smarter data transfer scheduler is helpful; for
the checksum, an asynchronized way is a potential solution.
Both enhancements are out of the scope of this paper,
however, which focuses on workload characterization. The
main observation we get from this work is that even though
there is room for further enhancement for data movement,

we can achieve affordable or even negligible data movement
overhead compared with the compute time, as shown in
Figure 9(b) and 9(c).

Figure 9(b) shows the average compute time and data
movement time for each stage. Clearly, compared with
the compute time, the data movement time is negligible.
Figure 9(c) shows the average data movement overhead. The
data movement overhead for a workunit is calculated by the
data movement time divided by the sum of data movement
time and the compute time. The average of a task stage is
calculated among all the workunits belonging to the same
task stage. Some stages have relatively high overhead, but
the total time consumed by those stages is small, and thus
the impact is trivial. The whole job’s average overhead is
less than 3%.

V. DISCUSSION

From the workload characterization, we have learned that
the MG-RAST, a typical instance of various bioinformat-
ics data analysis pipelines, is composed with applications
with diverse characteristics at different stages, in terms of
both compute and data intensiveness. That is, for such
applications, a single job requires computing resources of
different features, such as hardware types, storages capabil-
ities, and network bandwidths. Therefore, in order to utilize
diverse computing resources for the various workloads, it
is crucial to understand the workload characteristics at the
first place, which is consistent with our motivation for this
workload characterization work. Following we discuss how
we can utilize the workload characterization results to benefit
application development, service operation, and resource
management, including some future research opportunities.

From the application development perspective, both the
tool developer and the workflow developer can benefit
from the performance data. The tool developer can use the
performance data as feedback for each stage to identify
performance bottleneck and enhance program performance,
concurrency, and resource efficiency. The workflow/pipeline
developer can use both the compute and I/O performance
data to revise the workflow design. For example, one can
choose to merge two stages involving too much data transfer
in between. The performance trend can also guide task sizing
and splitting. For example, in our earlier trace at the gncl
stage, the compute time increased sharply when the input
size was more than 500 MB. Thus we chose to limit the
maximum size of the gncl workunit to under 500 MB.

From the service perspective, the service operator can use
the performance data to estimate how long a job needs to
run based on the input data size. Of course, it is hard to
predict the total job turnaround time, which also depends on
the queue depth, resource status, and scientific application
characteristics. To provide an accurate estimation of job
turnaround time is one of our future research steps. The
ability to provide real-time performance data, addressed in
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this work, is a first step toward that direction. Also, the
service operator can use the workunit runtime feedback to
identify potential failures. For example, if a workunit’s ratio
of compute time to size is far from the expected (as shown
in Figure 7, something is wrong, either with the application
or with the computing resources, and time can be invested
profitably to diagnose the problem.

From the resource management perspective, the workload
characterization is instructive for resource allocation and
capacity planning. For example, the scheduler can use the
I/O and compute characteristics for data-aware task place-
ment, shipping the compute intensive tasks to the computing
resources further away from the data server and leaving
the computing resources closer to the data for the I/O-
intensive tasks. Also, based on the application characteristics
combined with the queue status, the resource provisioner can
make the right decision to scale up or down the number of
computing resources of different types needed on different
cloud sites. Based on this workload characterization work,
data-aware scheduling and resource provisioning are on the
roadmap of our future work.

VI. RELATED WORK

MG-RAST is one of many popular biological sequence
data analysis services and toolkits. For example, RAST [§]
is an automated service for annotating bacterial and arterial
genomes; and Galaxy [14] provides an open web-based
platform for performing accessible, reproducible, and trans-
parent genomic science. MG-RAST also provides web-based
open services, but it is for metagenome analysis, which
involves very different procedures from those for whole
genomes [11]. Camera [23] and IMG/M [5] both implement
metagenomic annotation functions, but neither has scaled to
the data sizes analyzed by MG-RAST.

Computational biology research has been utilizing cloud
computing systems in recent years [20][22]. Our previous
work [27][28] implemented an approach to scale MG-RAST
tasks into the cloud, but it was for one computationally
expensive task only (si¢ms) and did not support the full
pipeline. Our new software is much more sophisticated,
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providing integrated management for applications, services,
computing resources, and data products.

Understanding the workload characteristics is essential for
serving the application better with the various computing
systems [15]. Some public workload archives exist for the
study of workload characteristics for respective computing
paradigms. For example, Parallel Workload Archive [13]
collects and shares job workloads from dozens of supercom-
puting centers worldwide; and the Grid Workloads Archive
[18] provides a platform to share workloads on various grid
platforms. The Google’s cluster workload traces project [4]
provides the trace data from Google computing cells. To
our best knowledge, our work is the first to characterize
the computational workloads for a production bioinformatics
data analysis service running in the cloud.

VII. SUMMARY

As the DNA sequence cost has dramatically decreased in
recent years, more research opportunities have been seen in
genomics and metagenomics. However, the bottleneck has
been shifted to the computationally expensive data analysis;
the rate of data generating by sequencing machines has been
faster than the computing power improvement defined by
Moore’s law. Thus, utilizing distributed and elastic comput-
ing resources for bioinformatics data analysis has become
a trend and, indeed, a demand. In order to efficiently use
these resources, a crucial prerequisite is understanding the
application workload characteristics.

In this work, we present our experience in porting MG-
RAST, a production metagenomics data analysis service,
into the cloud. We characterize the application character-
istics from the perspective of computation, I/O, and data
movement. Insights from this work can guide the further
enhancement of the MG-RAST pipeline in terms of appli-
cation optimization, workflow revision, service operation,
and resource management. Moreover, our open-source data
analysis and performance measurement framework can be
applied to generic big data applications for scalable data
analysis and workload characterization.
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